Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-13, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37409735

RESUMEN

Breast cancer (BC) is one of the most prevalent cancers in the world and is one of the major reasons for the death of women worldwide. BC is majorly categorized based on the presence or absence of three cell receptors ER, PR and HER2. The latest treatment for BC involves interfering with the production and action of hormones such as estrogen and progesterone. These hormones bind with receptors such as ER and PR and enhance the growth and proliferation of the BC cells. Although the available are effective, the increasing resistance and side effects related to hormonal imbalance are significant and hence there is a need for designing. On the other hand, plant-derivative products have gained a lot of popularity for their promising anti-cancerous activities. Polyphenols are one such group of plant derivatives that have proven to be useful against cancer. In the present study, an in-silico approach was used to search for a polyphenol that can inhibit ER. In this work, a total of 750 polyphenols were taken into consideration. This number was narrowed down to 55, based on their ADMET properties. These 55 polyphenols were then docked to the receptors, ER, PR and HER2. The molecular docking was followed by Molecular Dynamics (MD) simulations. Based on molecular docking and MD simulation results it was concluded that Pseudobaptigenin has the potential to be an inhibitor of ER, PR and HER2.Communicated by Ramaswamy H. Sarma.

2.
Biol Rev Camb Philos Soc ; 98(4): 1160-1183, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36880422

RESUMEN

Atherosclerosis is a major contributor to the onset and progression of cardiovascular disease (CVD). Cholesterol-loaded foam cells play a pivotal role in forming atherosclerotic plaques. Induction of cholesterol efflux from these cells may be a promising approach in treating CVD. The reverse cholesterol transport (RCT) pathway delivers cholesteryl ester (CE) packaged in high-density lipoproteins (HDL) from non-hepatic cells to the liver, thereby minimising cholesterol load of peripheral cells. RCT takes place via a well-organised interplay amongst apolipoprotein A1 (ApoA1), lecithin cholesterol acyltransferase (LCAT), ATP binding cassette transporter A1 (ABCA1), scavenger receptor-B1 (SR-B1), and the amount of free cholesterol. Unfortunately, modulation of RCT for treating atherosclerosis has failed in clinical trials owing to our lack of understanding of the relationship between HDL function and RCT. The fate of non-hepatic CEs in HDL is dependent on their access to proteins involved in remodelling and can be regulated at the structural level. An inadequate understanding of this inhibits the design of rational strategies for therapeutic interventions. Herein we extensively review the structure-function relationships that are essential for RCT. We also focus on genetic mutations that disturb the structural stability of proteins involved in RCT, rendering them partially or completely non-functional. Further studies are necessary for understanding the structural aspects of RCT pathway completely, and this review highlights alternative theories and unanswered questions.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Humanos , Colesterol/metabolismo , Colesterol/uso terapéutico , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/uso terapéutico , Aterosclerosis/metabolismo , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/metabolismo
3.
Mol Ther Nucleic Acids ; 30: 241-256, 2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36284512

RESUMEN

The triple-helix structure at the 3' end of metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long non-coding RNA, has been considered to be a target for modulating the oncogenic functions of MALAT1. This study examines the binding of quercetin-a known triplex binding molecule-to the MALAT1 triplex. By employing UV-visible spectroscopy, circular dichroism spectroscopy, and isothermal titration calorimetry, we observed that quercetin binds to the MALAT1 triplex with a stoichiometry of 1:1 and K d of 495 ± 61 nM, along with a negative change in free energy, indicating a spontaneous interaction. Employing real-time PCR measurements, we observed around 50% downregulation of MALAT1 transcript levels in MCF7 cells, and fluorescence in situ hybridization (FISH) experiments showed concomitantly reduced levels of MALAT1 in nuclear speckles. This interaction is likely a result of a direct interaction between the molecule and the RNA, as indicated by a transcription-stop experiment. Further, transcriptome-wide analysis of alternative splicing changes induced by quercetin revealed modulation of MALAT1 downstream genes. Collectively, our study shows that quercetin strongly binds to the MALAT1 triplex and modulates its functions. It can thus be used as a scaffold for further development of therapeutics or as a chemical tool to understand MALAT1 functions.

4.
Comput Struct Biotechnol J ; 20: 4172-4184, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36016716

RESUMEN

The introduction of CRISPR/Cas9 based gene editing has greatly accelerated therapeutic genome editing. However, the off-target DNA cleavage by CRISPR/Cas9 protein hampers its clinical translation, hindering its widespread use as a programmable genome editing tool. Although Cas9 variants with better mismatch discrimination have been developed, they have significantly lower rates of on-target DNA cleavage. Here, we have compared the dynamics of a more specific naturally occurring Cas9 from Francisella novicida (FnCas9) to the most widely used, SpCas9 protein. Long-scale atomistic MD simulation of free and gRNA bound forms of both the Cas9 proteins was performed, and their domain rearrangements and binding affinity with gRNA were compared to decipher the possible reason behind the enhanced specificity of FnCas9 protein. The greater binding affinity with gRNA, high domain electrostatics, and more volatility of FnCas9 than SpCas9 may explain its increased specificity and lower tolerance for mismatches.

5.
Front Pharmacol ; 13: 858345, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35865963

RESUMEN

India confines more than 17% of the world's population and has a diverse genetic makeup with several clinically relevant rare mutations belonging to many sub-group which are undervalued in global sequencing datasets like the 1000 Genome data (1KG) containing limited samples for Indian ethnicity. Such databases are critical for the pharmaceutical and drug development industry where diversity plays a crucial role in identifying genetic disposition towards adverse drug reactions. A qualitative and comparative sequence and structural study utilizing variant information present in the recently published, largest curated Indian genome database (IndiGen) and the 1000 Genome data was performed for variants belonging to the kinase coding genes, the second most targeted group of drug targets. The sequence-level analysis identified similarities and differences among different populations based on the nsSNVs and amino acid exchange frequencies whereas a comparative structural analysis of IndiGen variants was performed with pathogenic variants reported in UniProtKB Humsavar data. The influence of these variations on structural features of the protein, such as structural stability, solvent accessibility, hydrophobicity, and the hydrogen-bond network was investigated. In-silico screening of the known drugs to these Indian variation-containing proteins reveals critical differences imparted in the strength of binding due to the variations present in the Indian population. In conclusion, this study constitutes a comprehensive investigation into the understanding of common variations present in the second largest population in the world and investigating its implications in the sequence, structural and pharmacogenomic landscape. The preliminary investigation reported in this paper, supporting the screening and detection of ADRs specific to the Indian population could aid in the development of techniques for pre-clinical and post-market screening of drug-related adverse events in the Indian population.

6.
Biomolecules ; 12(5)2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35625636

RESUMEN

Lipid compositions of cells, tissues, and bio-fluids are complex, with varying concentrations and structural diversity making their identification challenging. Newer methods for comprehensive analysis of lipids are thus necessary. Herein, we propose a targeted-mass spectrometry based lipidomics screening method using a combination of variable retention time window and relative dwell time weightage. Using this method, we identified more than 1000 lipid species within 24-min. The limit of detection varied from the femtomolar to the nanomolar range. About 883 lipid species were detected with a coefficient of variance <30%. We used this method to identify plasma lipids altered due to vitamin B12 deficiency and found a total of 18 lipid species to be altered. Some of the lipid species with ω-6 fatty acid chains were found to be significantly increased while ω-3 decreased in vitamin B12 deficient samples. This method enables rapid screening of a large number of lipid species in a single experiment and would substantially advance our understanding of the role of lipids in biological processes.


Asunto(s)
Ácidos Grasos Omega-3 , Lipidómica , Lípidos/análisis , Espectrometría de Masas/métodos , Vitaminas
7.
J Mol Biol ; 434(12): 167618, 2022 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-35500842

RESUMEN

The double-membrane-bound architecture of mitochondria, essential for ATP production, sub-divides the organelle into inter-membrane space (IMS) and matrix. IMS and matrix possess contrasting oxido-reductive environments and discrete protein quality control (PQC) machineries resulting inherent differences in their protein folding environments. To understand the nature of stress response elicited by equivalent proteotoxic stress to these sub-mitochondrial compartments, we took misfolding and aggregation-prone stressor proteins and fused it to well described signal sequences to specifically target and impart stress to yeast mitochondrial IMS or matrix. We show, mitochondrial proteotoxicity leads to growth arrest of yeast cells of varying degrees depending on nature of stressor proteins and the intra-mitochondrial location of stress. Next, by employing transcriptomics and proteomics, we report a comprehensive stress response elicited by stressor proteins specifically targeted to mitochondrial matrix or IMS. A general response to proteotoxic stress by mitochondria-targeted misfolded proteins is mitochondrial fragmentation, and an adaptive abrogation of mitochondrial respiration with concomitant upregulation of glycolysis. Beyond shared stress responses, specific signatures due to stress within mitochondrial sub-compartments are also revealed. We report that stress-imparted by bipartite signal sequence-fused stressor proteins to IMS, leads to specific upregulation of IMS-chaperones and TOM complex components. In contrast, matrix-targeted stressors lead to specific upregulation of matrix-chaperones and cytosolic PQC components. Finally, by systematic genetic interaction using deletion strains of differentially upregulated genes, we found prominent modulatory role of TOM complex components during IMS-stress response. In contrast, VMS1 markedly modulates the stress response originated from matrix.


Asunto(s)
Mitocondrias , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Chaperonas Moleculares , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Estrés Fisiológico , Proteínas Portadoras/metabolismo , Mitocondrias/metabolismo , Membranas Mitocondriales/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales/metabolismo , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Prog Biophys Mol Biol ; 172: 60-76, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35577099

RESUMEN

CRISPR/Cas system, a newly but extensively investigated genome-editing method, harbors practical solutions for various genetic problems. It relies on short guide RNAs (gRNAs) to recruit the Cas9 protein, a DNA cleaving enzyme, to its genomic target DNAs. The Cas9 enzyme exhibits some unique properties, like the ability to differentiate self vs. non-self - DNA strands using the base-pairing potential of crRNA, i.e., only CRISPR DNA is entirely complementary to the CRISPR repeat sequences at the crRNA whereas the presence of mismatches in the upstream region of the spacer permit CRISPR interference which is inhibited in case of CRISPR-DNA, allosteric regulation in its domains, and domain reorientation on sgRNA binding. Several groups have contributed their efforts in understanding the functioning of the CRISPR/Cas system, but even then, there is a lot more to explore in this area. The structural and sequence-based understanding of the whole CRISPR-associated bacterial ortholog family landscape is still ambiguous. A better understanding of the underlying energetics of the CRISPR/Cas9 system should reveal critical parameters to design better CRISPR/Cas9s.


Asunto(s)
Proteína 9 Asociada a CRISPR , ARN Guía de Kinetoplastida , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , ADN/química , ADN/genética , Edición Génica , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo
9.
BMC Complement Med Ther ; 22(1): 114, 2022 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-35459166

RESUMEN

BACKGROUND: Viral infections have a history of abrupt and severe eruptions through the years in the form of pandemics. And yet, definitive therapies or preventive measures are not present. Herbal medicines have been a source of various antiviral compounds such as Oseltamivir, extracted using shikimic acid from star anise (Illicium verum) and Acyclovir from Carissa edulis are FDA (Food and Drug Administration) approved antiviral drugs. In this study, we dissect the anti-coronavirus infection activity of Cissampelos pareira L (Cipa) extract using an integrative approach. METHODS: We analysed the signature similarities between predicted antiviral agents and Cipa using the connectivity map ( https://clue.io/ ). Next, we tested the anti-SARS-COV-2 activity of Cipa in vitro. Molecular docking analyses of constituents of with key targets of SARS-CoV2 protein viz. spike protein, RNA­dependent RNA­polymerase (RdRp) and 3C­like proteinase. was also performed. A three-way comparative analysis of Cipa transcriptome, COVID-19 BALF transcriptome and CMAP signatures of small compounds was also performed. RESULTS: Several predicted antivirals showed a high positive connectivity score with Cipa such as apcidin, emetine, homoharringtonine etc. We also observed 98% inhibition of SARS-COV-2 replication in infected Vero cell cultures with the whole extract. Some of its prominent pure constituents e.g. pareirarine, cissamine, magnoflorine exhibited 40-80% inhibition. Comparison of genes between BALF and Cipa showed an enrichment of biological processes like transcription regulation and response to lipids, to be downregulated in Cipa while being upregulated in COVID-19. CMAP also showed that Triciribine, torin-1 and VU-0365114-2 had positive connectivity with BALF 1 and 2, and negative connectivity with Cipa. Amongst all the tested compounds, Magnoflorine and Salutaridine exhibited the most potent and consistent strong in silico binding profiles with SARS-CoV2 therapeutic targets.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Cissampelos , Antivirales/farmacología , Cissampelos/química , Simulación del Acoplamiento Molecular , Extractos Vegetales/química , Extractos Vegetales/farmacología , ARN Viral , SARS-CoV-2
10.
Proc Natl Acad Sci U S A ; 119(18): e2118465119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35486698

RESUMEN

The GroEL/ES chaperonin cavity surface charge properties, especially the negative charges, play an important role in its capacity to assist intracavity protein folding. Remarkably, the larger fraction of GroEL/ES negative charges are not conserved among different bacterial species, resulting in a large variation in negative-charge density in the GroEL/ES cavity across prokaryotes. Intriguingly, eukaryotic GroEL/ES homologs have the lowest negative-charge density in the chaperonin cavity. This prompted us to investigate if GroEL's chaperoning mechanism changed during evolution. Using a model in vivo GroEL/ES substrate, we show that the ability of GroEL/ES to buffer entropic traps in the folding pathway of its substrate was partially dependent upon the negative-charge density inside its cavity. While this activity of GroEL/ES was found to be essential for Escherichia coli, it has been perfected in some organisms and diminished in others. However, irrespective of their charges, all the tested homologs retained their ability to regulate polypeptide chain collapse and remove enthalpic traps from folding pathways. The ability of these GroEL/ES homologs to buffer mutational variations in a model substrate correlated with their negative-charge density. Thus, Hsp60/10 chaperonins in different organisms may have changed to accommodate a different spectrum of mutations on their substrates.


Asunto(s)
Chaperonina 60 , Pliegue de Proteína , Chaperonina 60/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Chaperonas Moleculares/metabolismo , Péptidos/química
11.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 6703-6706, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892646

RESUMEN

In both invertebrate and vertebrate animals, small networks called central pattern generators (CPGs) form the building blocks of the neuronal circuits involved in locomotion. Most CPGs contain a simple half-center oscillator (HCO) motif which consists of two neurons, or populations of neurons, connected by reciprocal inhibition. CPGs and HCOs are well characterized neuronal networks and have been extensively modeled at different levels of abstraction. In the past two decades, hardware implementation of spiking CPG and HCO models in neuromorphic hardware has opened up new applications in mobile robotics, computational neuroscience, and neuroprosthetics. Despite their relative simplicity, the parameter space of GPG and HCO models can become exhaustive when considering various neuron models and network topologies. Motivated by computational work in neuroscience that used a brute-force approach to generate a large database of millions of simulations of the heartbeat HCO of the leech, we have started to build a database of spiking chains of multiple HCOs for different neuron model types and network topologies. Here we present preliminary results using the Izhikevich and Morris-Lecar neuron models for single and pairs of HCOs with different inter-HCO coupling schemes.


Asunto(s)
Sanguijuelas , Neurociencias , Animales , Locomoción , Modelos Neurológicos , Neuronas
12.
Sci Rep ; 11(1): 20095, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34635729

RESUMEN

Bioactive fractions obtained from medicinal plants which have been used for the treatment of multiple diseases could exert their effects by targeting common pathways. Prior knowledge of their usage could allow us to identify novel molecular links. In this study, we explored the molecular basis of action of one such herbal formulation Cissampelos pareira L. (Cipa), used for the treatment of female hormone disorders and fever. Transcriptomic studies on MCF7 cell lines treated with Cipa extract carried out using Affymetrix arrays revealed a downregulation of signatures of estrogen response potentially modulated through estrogen receptor α (ERα). Molecular docking analysis identified 38 Cipa constituents that potentially bind (ΔG < - 7.5) with ERα at the same site as estrogen. The expression signatures in the connectivity map ( https://clue.io/; ) revealed high positive scores with translation inhibitors such as emetine (score: 99.61) and knockdown signatures of genes linked to the antiviral response such as ribosomal protein RPL7 (score: 99.92), which is a reported ERα coactivator. Further, gene knockdown experiments revealed that Cipa exhibits antiviral activity in dengue infected MCF7 cells potentially modulated through estrogen receptor 1. This approach reveals a novel pathway involving the ESR1-RPL7 axis which could be a potential target in dengue viral infection.


Asunto(s)
Antivirales/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Cissampelos/química , Dengue/tratamiento farmacológico , Receptor alfa de Estrógeno/metabolismo , Extractos Vegetales/farmacología , Transcriptoma/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/virología , Dengue/metabolismo , Dengue/patología , Dengue/virología , Virus del Dengue , Receptor alfa de Estrógeno/genética , Femenino , Humanos , Células MCF-7
13.
EMBO J ; 40(15): e107134, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34180064

RESUMEN

Long non-coding RNAs (lncRNAs) are emerging as key regulators of endothelial cell function. Here, we investigated the role of a novel vascular endothelial-associated lncRNA (VEAL2) in regulating endothelial permeability. Precise editing of veal2 loci in zebrafish (veal2gib005Δ8/+ ) induced cranial hemorrhage. In vitro and in vivo studies revealed that veal2 competes with diacylglycerol for interaction with protein kinase C beta-b (Prkcbb) and regulates its kinase activity. Using PRKCB2 as bait, we identified functional ortholog of veal2 in humans from HUVECs and named it as VEAL2. Overexpression and knockdown of VEAL2 affected tubulogenesis and permeability in HUVECs. VEAL2 was differentially expressed in choroid tissue in eye and blood from patients with diabetic retinopathy, a disease where PRKCB2 is known to be hyperactivated. Further, VEAL2 could rescue the effects of PRKCB2-mediated turnover of endothelial junctional proteins thus reducing hyperpermeability in hyperglycemic HUVEC model of diabetic retinopathy. Based on evidence from zebrafish and hyperglycemic HUVEC models and diabetic retinopathy patients, we report a hitherto unknown VEAL2 lncRNA-mediated regulation of PRKCB2, for modulating junctional dynamics and maintenance of endothelial permeability.


Asunto(s)
Retinopatía Diabética/genética , Proteína Quinasa C beta/genética , ARN Largo no Codificante/genética , Pez Cebra/genética , Anciano , Anciano de 80 o más Años , Animales , Animales Modificados Genéticamente , Estudios de Casos y Controles , Retinopatía Diabética/fisiopatología , Embrión no Mamífero , Endotelio Vascular , Regulación de la Expresión Génica , Células Endoteliales de la Vena Umbilical Humana , Humanos , Persona de Mediana Edad , Permeabilidad , Proteína Quinasa C beta/metabolismo , ARN Largo no Codificante/sangre , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
14.
Int J Biol Macromol ; 176: 117-125, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33516851

RESUMEN

Neuroserpin (NS) is an inhibitory protein of serpin super family, its shutter region variants have high propensity to aggregate leading to pathological disorders like familial encephalopathy with NS inclusion bodies (FENIB). Helix F and ß-sheet A of NS participate in the tissue plasminogen activator (tPA) inhibition but the mechanism is not yet completely understood. A microsecond (µs) molecular dynamics simulation of the helix F and strand 3A variants showed predominant fluctuations in the loop connecting the strands of ß-sheet A. Therefore to understand the role of helix F and strand 3A of ß-sheet A, cysteine was incorporated at the position N182 in stand 3A (N182C) and position W154 (W154C) in the helix F using site-directed mutagenesis. Purified variants were further labeled with Alexa Fluor488 C5 maleimide dye. Temperature dependent study using non-denaturing PAGE showed the formation of large aggregates of helix F variant W154C but not the strand 3A N182C variant. Interestingly tPA inhibition was found to be decreased in the labeled N182C with decreased tPA-complex formation as compared to labeled W154C NS variant. The fluorescence emission intensity of the labeled helix F variant W154C decreased in the presence of an increasing concentration of tPA, whereas an increase in emission intensity was observed in labeled strand 3A variant N182C, indicating more exposure of strand 3A and shielding of helix F. Taken together the data shows that helix F has a predominant role in the aggregation but a minor role in the inhibition mechanism.


Asunto(s)
Neuropéptidos/química , Serpinas/química , Colorantes Fluorescentes , Humanos , Maleimidas , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Neuropéptidos/antagonistas & inhibidores , Neuropéptidos/genética , Agregado de Proteínas , Conformación Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Serpinas/genética , Activador de Tejido Plasminógeno/farmacología , Neuroserpina
15.
Front Mol Biosci ; 8: 803078, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35155567

RESUMEN

ATP Binding Cassette Transporter A1 (ABCA1) plays an integral part in Reverse Cholesterol Transport (RCT) and is critical for maintaining lipid homeostasis. One theory of lipid efflux by the transporter (alternating access) proposes that ABCA1 harbours two different conformations that provide alternating access for lipid binding and release. This is followed by sequestration via a direct interaction between ABCA1 and its partner, ApoA1. The other theory (lateral access) proposes that ABCA1 obtains lipids laterally from the membrane to form a temporary extracellular "reservoir". This reservoir contains an isolated lipid monolayer due to the net accumulation of lipids in the exofacial leaflet. Recently, a full-length Cryo-EM structure of this 2,261-residue transmembrane protein showed its discreetly folded domains and have detected the presence of a tunnel enclosed within the extracellular domains (ECDs) but not in the TMDs, giving it an outward-facing conformation. This structure was hypothesized to substantiate the lateral access theory. Utilizing long time-scale multiple replica atomistic molecular dynamics simulations (MDS), we simulated the structure in a large heterogeneous lipid environment and found that the protein undergoes several large conformational changes in its extremities. We observed that the cavity enclosed within ATP unbound form of ABCA1 is narrow at the distal ends of TMD as well as the ECD region substantiating the "lateral access" theory. We have also characterized ABCA1 and the lipid dynamics along with the protein-lipid interactions in the heterogeneous environment, providing novel insights into understanding ABCA1 conformation at an atomistic level.

16.
ACS Omega ; 5(48): 30808-30816, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33324790

RESUMEN

The epithelial cell adhesion molecule (EpCAM) is a transmembrane cell adhesion glycoprotein, which primarily contributes to stemness, proliferation, and metastasis properties of tumor cells. Regulated intramembrane proteolysis by ADAM proteases and γ-secretase cleaves EpCAM into an ∼27 kDa soluble extracellular and an ∼4 kDa cytoplasmic domain (EpICD). After the EpICD fragment is released inside the cell, the formation of a nuclear signaling complex with the FHL2 molecule is critical for exerting its regulatory role. Trop-2, a homologous protein of EpCAM, undergoes phosphorylation in its cytoplasmic domain (Trop-IC). The phosphorylation of Trop-2 is reported to be crucial for its function. This led us to ask the fundamental question if EpCAM does undergo similar post-translational modification(PTM) like its homologous protein to carry out its diverse biological function. Here, we identify a putative phosphorylation site at Tyr297 located in the cytoplasmic domain of EpCAM. Molecular dynamic simulation (MDS) of 90 ns was carried out to understand the biological/functional relevance of the putative phosphorylation. It was observed that this phosphorylation stabilizes the α-helical structure of the EpICD. Though Tyr297 does not affect the γ-secretase mediated cleavage of EpCAM, it affects the binding of EpICD to FHL2. Docking analysis revealed that phosphorylation mediated structural stability of EpICD positively impacts its binding affinity with FHL2, which was further validated using 100 ns MDS. Phosphorylated EpICD forms higher numbers of hydrogen bonds, salt bridges, and other non-bonded interactions with FHL2, leading to enhanced interactions. This in silico study reveals a potential PTM in the EpICD, providing the basis for future research in understanding the mechanism behind the diverse biological function of EpCAM.

17.
J Proteins Proteom ; 11(3): 159-165, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33132628

RESUMEN

In the last few months, there has been a global catastrophic outbreak of severe acute respiratory syndrome disease caused by the novel coronavirus SARS-CoV-2 affecting millions of people worldwide. Early diagnosis and isolation are key to contain the rapid spread of the virus. Towards this goal, we report a simple, sensitive and rapid method to detect the virus using a targeted mass spectrometric approach, which can directly detect the presence of virus from naso-oropharyngeal swabs. Using a multiple reaction monitoring we can detect the presence of two peptides specific to SARS-CoV-2 in a 2.3 min gradient run with 100% specificity and 90.5% sensitivity when compared to RT-PCR. Importantly, we further show that these peptides could be detected even in the patients who have recovered from the symptoms and have tested negative for the virus by RT-PCR highlighting the sensitivity of the technique. This method has the translational potential of in terms of the rapid diagnostics of symptomatic and asymptomatic COVID-19 and can augment current methods available for diagnosis of SARS-CoV-2.

18.
J Mol Biol ; 432(20): 5649-5664, 2020 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-32835659

RESUMEN

The folding landscape of proteins can change during evolution with the accumulation of mutations that may introduce entropic or enthalpic barriers in the protein folding pathway, making it a possible substrate of molecular chaperones in vivo. Can the nature of such physical barriers of folding dictate the feasibility of chaperone-assistance? To address this, we have simulated the evolutionary step to chaperone-dependence keeping GroEL/ES as the target chaperone and GFP as a model protein in an unbiased screen. We find that the mutation conferring GroEL/ES dependence in vivo and in vitro encode an entropic trap in the folding pathway rescued by the chaperonin. Additionally, GroEL/ES can edit the formation of non-native contacts similar to DnaK/J/E machinery. However, this capability is not utilized by the substrates in vivo. As a consequence, GroEL/ES caters to buffer mutations that predominantly cause entropic traps, despite possessing the capacity to edit both enthalpic and entropic traps in the folding pathway of the substrate protein.


Asunto(s)
Chaperonina 60/química , Chaperonina 60/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Pliegue de Proteína , Sitios de Unión , Chaperonina 60/genética , Chaperoninas , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas de Choque Térmico , Cinética , Chaperonas Moleculares/genética , Mutación
19.
FEBS J ; 287(4): 671-694, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31423733

RESUMEN

In eukaryotes, Hsp110s are unambiguous cognates of the Hsp70 chaperones, in primary sequence, domain organization, and structure. Hsp110s function as nucleotide exchange factors (NEFs) for the Hsp70s although their apparent loss of Hsp70-like chaperone activity, nature of interdomain communication, and breadth of domain functions are still puzzling. Here, by combining single-molecule FRET, small angle X-ray scattering measurements (SAXS), and MD simulation, we show that yeast Hsp110, Sse1 lacks canonical Hsp70-like interdomain allostery. However, the protein exhibits unique noncanonical conformational changes within its domains. Sse1 maintains an open-lid substrate-binding domain (SBD) in close contact with its nucleotide-binding domain (NBD), irrespective of its ATP hydrolysis status. To further appreciate such ATP-hydrolysis-independent exhaustive interaction between two domains of Hsp110s, NBD-SBD chimera was constructed between Hsp110 (Sse1) and Hsp70 (Ssa1). In Sse1/Ssa1 chimera, we observed undocking of two domains leading to complete loss of NEF activity of Sse1. Interestingly, chimeric proteins exhibited significantly enhanced ATPase rate of Sse1-NBD compared to wild-type protein, implying that intrinsic ATPase activity of the protein remains mostly repressed. Apart from repressing the high ATPase activity of its NBD, interactions between two domains confer thermal stability to Sse1 and play critical role in the (co)chaperoning function of Sse1 in Ssa1-mediated disaggregation activity. Altogether, Sse1 exhibits a unique interdomain interaction, which is essential for its NEF activity, suppression of high intrinsic ATPase activity, co-chaperoning activity in disaggregase machinery, and stability of the protein.


Asunto(s)
Adenosina Trifosfatasas/química , Proteínas HSP70 de Choque Térmico/química , Proteínas Mutantes Quiméricas/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glicósido Hidrolasas/química , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Hidrólisis , Simulación de Dinámica Molecular , Proteínas Mutantes Quiméricas/genética , Proteínas Mutantes Quiméricas/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Proc Natl Acad Sci U S A ; 116(42): 20959-20968, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31570623

RESUMEN

Genome editing using the CRISPR/Cas9 system has been used to make precise heritable changes in the DNA of organisms. Although the widely used Streptococcus pyogenes Cas9 (SpCas9) and its engineered variants have been efficiently harnessed for numerous gene-editing applications across different platforms, concerns remain regarding their putative off-targeting at multiple loci across the genome. Here we report that Francisella novicida Cas9 (FnCas9) shows a very high specificity of binding to its intended targets and negligible binding to off-target loci. The specificity is determined by its minimal binding affinity with DNA when mismatches to the target single-guide RNA (sgRNA) are present in the sgRNA:DNA heteroduplex. FnCas9 produces staggered cleavage, higher homology-directed repair rates, and very low nonspecific genome editing compared to SpCas9. We demonstrate FnCas9-mediated correction of the sickle cell mutation in patient-derived induced pluripotent stem cells and propose that it can be used for precise therapeutic genome editing for a wide variety of genetic disorders.


Asunto(s)
Proteína 9 Asociada a CRISPR/química , Proteína 9 Asociada a CRISPR/metabolismo , ADN/genética , Francisella/enzimología , Edición Génica , Animales , Proteína 9 Asociada a CRISPR/genética , Catálisis , ADN/química , ADN/metabolismo , Francisella/genética , Genoma , Humanos , Cinética , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA